Transition dynamics and magic-number-like behavior of frictional granular clusters.
نویسندگان
چکیده
Force chains, the primary load-bearing structures in dense granular materials, rearrange in response to applied stresses and strains. These self-organized grain columns rely on contacts from weakly stressed grains for lateral support to maintain and find new stable states. However, the dynamics associated with the regulation of the topology of contacts and strong versus weak forces through such contacts remains unclear. This study of local self-organization of frictional particles in a deforming dense granular material exploits a transition matrix to quantify preferred conformations and the most likely conformational transitions. It reveals that favored cluster conformations reside in distinct stability states, reminiscent of "magic numbers" for molecular clusters. To support axial loads, force chains typically reside in more stable states of the stability landscape, preferring stabilizing trusslike, three-cycle contact triangular topologies with neighboring grains. The most likely conformational transitions during force chain failure by buckling correspond to rearrangements among, or loss of, contacts which break the three-cycle topology.
منابع مشابه
Transition Dynamics of Frictional Granular Clusters
Force chains, the primary load-bearing structures in dense granular materials, rearrange in response to applied stresses and strains. These self-organized grain columns rely on contacts from weakly stressed grains for lateral support to maintain and find new stable states. However, the dynamics associated with the regulation of the topology of contacts and strong-versus-weak forces through such...
متن کاملPlanar Molecular Dynamics Simulation of Au Clusters in Pushing Process
Based on the fact the manipulation of fine nanoclusters calls for more precise modeling, the aim of this paper is to conduct an atomistic investigation for interaction analysis of particle-substrate system for pushing and positioning purposes. In the present research, 2D molecular dynamics simulations have been used to investigate such behaviors. Performing the planar simulations can provide a ...
متن کاملMicrostructure evolution during impact on granular matter.
We study the impact of an intruder on a dense granular material. The process of impact and interaction between the intruder and the granular particles is modeled using discrete element simulations in two spatial dimensions. In the first part of the paper we discuss how the intruder's dynamics depends on (1) the intruder's properties, including its size, shape and composition, (2) the properties...
متن کاملMagic Numbers for Classical Lennard-Jones Cluster Heat Capacities
Heat capacity curves as functions of temperature for classical atomic clusters bound by pairwise Lennard-Jones potentials were calculated for aggregate sizes 4 ≤ N ≤ 24 using Monte Carlo methods. J-walking (or jump-walking) was used to overcome convergence difficulties due to quasi-ergodicity in the solid-liquid transition region. The heat capacity curves were found to differ markedly and nonmo...
متن کاملFriction in inertial granular flows: microscopic and macroscopic origins
Granular media are prevalent in dynamic frictional processes throughout nature and technology, from earthquakes to grain transport. Empirical relations describing macroscopic friction as a function of the inertial number have proven successful in predicting experimentally observed velocity and stress profi les when combined with continuum models. However, these relations and the continuum model...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 86 1 Pt 1 شماره
صفحات -
تاریخ انتشار 2012